Skip to main content

Research areas

Specific faculty research includes:

  • Dr. Ed Waller currently operates a unique, state-of-the-art aerosol research laboratory to investigate potential hazards from terrorist use of radiological dispersal devices (RDDs). These facilities include a medium-scale aerosol test cell and portable instrumentation such as a portable particle sizer, hotwire anemometer, and thermo-hygrometer. The research is widely applicable to determination of hazard from airborne contaminants. Research is also being conducted on radiation-based methods for looking through walls. The technology, called coded aperture imaging, will be used to generate high-quality images through visually opaque structures, such as walls or pipes;
  • Dr. Anthony Waker and Dr. Ed Waller are in the process of establishing two industrial research chairs in health physics and environmental safety as part of the University Network of Excellence in Nuclear Engineering (UNENE). The main thrusts of this research will be the design, construction and evaluation of innovative devices for the real-time measurement of complex radiation fields encountered in nuclear power plants and advancement of the computer simulation and modelling of the interaction of humans and non-human biota with these fields. The long-term objective of this work will be the provision of an advanced operational health physics tool through the integration of the research methods and results into an online health physics and environmental protection information management system; 
  • Dr. Eleodor Nichita is engaged in exciting research in reactor physics, neutron and radiation transport and mathematical modelling and numerical methods. For the computationally inclined, work is ongoing on developing computational methods for the neutron transport problems stemming from the neutronic design of new-generation nuclear reactors. And, for the experimentally inclined, another project under way is the developing of a platform to allow students to perform laboratory experiments remotely by using a simple browser interface; 
  • Dr. Lixuan Lu's research focuses on reliability and safety assessment for safety-critical systems, maintenance strategy determination, networked control systems, decentralized control, sensor networks and embedded systems;
  • Dr. Brian Ikeda's primary area of research is the study of corrosion and corrosion-assisted failure of metals. The focus of the research has been materials related to the nuclear industry, and in particular, materials under consideration for the construction of nuclear fuel waste containers;
  • Dr. Igor Pioro's areas of research include; nuclear engineering (thermal hydraulics of nuclear reactors and Generation IV nuclear reactor concepts), thermal sciences (boiling, forced convection including Supercritical pressures, etc.) and heat engineering (two-phase thermosyphons, heat exchangers, heat-recovery systems, etc.); and
  • Dr. Hossam Gaber's main focus is to investigate methods and technologies for safety and control engineering and their applications on energy and nuclear facilities, as well as the development of intelligent modeling and simulation tools to support the design and operation of smart grid. This includes: risk-based energy conservation and supply management, safety design & verification, intelligent control system design, fault diagnosis and real-time fault simulation, risk-based maintenance optimization, and disaster management and planning support. Potential industries are nuclear, and emerging and renewable energy technologies, including hydrogen, oil and gas, nuclear, wind, solar, etc.